3D-SSF: A bio-inspired approach for dynamic multi-subject clustering of white matter tracts

نویسندگان

  • A. Chekir
  • Salima Hassas
  • Maxime Descoteaux
  • M. Côté
  • Eleftherios Garyfallidis
  • Fatima Oulebsir-Boumghar
چکیده

There is growing interest in the study of white matter (WM) variation across subjects, and in particular the analysis of specific WM bundles, to better understand brain development and aging, as well as to improve early detection of some diseases. Several WM multi-subject clustering methods have been proposed to study WM bundles. These methods aim to overcome the complexity of the problem, which includes the huge size of the WM tractography datasets generated from multiple subjects, the existence of various streamlines with different positions, lengths and geometric forms, as well as the presence of outliers. However, the current methods are not sufficiently flexible to address all of these constraints. Here we introduce a novel dynamic multi-subject clustering framework based on a distributed multiagent implementation of the Multiple Species Flocking model, that we name 3D-Streamlines Stream Flocking (3D-SSF). Specifically, we consider streamlines from different subjects as data streams, and each streamline is assigned to a mobile agent. Agents work together following flocking rules in order to form a flock. Thanks to a similarity function, the agents that are associated with similar streamlines form a flock, whereas the agents that are associated with dissimilar streamlines are considered outliers. We use various experiments performed on noisy synthetic and real human brain data to validate 3D-SSF and demonstrate that it is more efficient and robust to outliers compared to other classical approaches. 3D-SSF is able to extract WM bundles at a population level, while considering WM variation across subjects and eliminating outlier streamlines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Bio-Inspired Clustering Algorithm for Energy Efficient Wireless Sensor Networks

In order to achieve the sensing, communication and processing tasks of Wireless Sensor Networks, an energy-efficient routing protocol is required to manage the dissipated energy of the network and to minimalize the traffic and the overhead during the data transmission stages. Clustering is the most common technique to balance energy consumption amongst all sensor nodes throughout the network. I...

متن کامل

Automated multi-subject fiber clustering of mouse brain using dominant sets

Mapping of structural and functional connectivity may provide deeper understanding of brain function and disfunction. Diffusion Magnetic Resonance Imaging (DMRI) is a powerful technique to non-invasively delineate white matter (WM) tracts and to obtain a three-dimensional description of the structural architecture of the brain. However, DMRI tractography methods produce highly multi-dimensional...

متن کامل

The Benefits and implementations of Diffusion tensor imaging and Neural Fiber Tractography in Brain Surgery

Background and Aim: The methods for detecting brain activation with fMRI, MRI provides a way to measure the anatomical connections which enable lightning-fast communication among neurons that specialize in different kinds of brain functions. Diffusion tensor imaging is able to measure the direction of bundles of the axonal fibers which are all aligned. Besides mapping white matter fiber tracts,...

متن کامل

A Bio-inspired Clustering Approach for Dynamic Document Distributed Analysis

Document clustering is a fundamental operation used in unsupervised document organization, automatic topic extraction and information retrieval. But most clustering technologies are limited in their application on the static document collection. Intelligence analysts are currently overwhelmed with tremendous amount of text information streams generated everyday. There is a lack of comprehensive...

متن کامل

Hierarchical Density-Based Clustering of White Matter Tracts in the Human Brain

Diffusion tensor magnetic resonance imaging (DTI) provides a promising way of estimating the neural fiber pathways in the human brain non-invasively via white matter tractography. However, it is difficult to analyze the vast number of resulting tracts quantitatively. Automatic tract clustering would be useful for the neuroscience community, as it can contribute to accurate neurosurgical plannin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers in biology and medicine

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2017